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An Improved FDTD Model for the
Feeding Gap of a Thin-Wire Antenna

So-ichi WatanabeMember, IEEE,and Masao Taki

Abstract—In calculations using the finite-difference time- a
domain (FDTD) method, the feeding gap of a thin-wire antenna
is often modeled by a so-called “one-cell gap” which lets the >
feeding gap to be one interval of Yee's lattice. This is often
inconsistent with the actual situation and it causes error in ®
FDTD calculation results. This letter shows that the error due
to the one-cell gap model is strongly dependent on the cell size, Feeding gap
and we present an improved FDTD model which assumes an
infinitesimally narrow feeding gap. We show that the antenna
input impedance calculated with the new gap model is barely
affected by the cell size and agrees well with the method of ® T A
moments (MoM) calculation results for an infinitesimal gap.
Furthermore, we clarify the dependence of error of a one-cell
gap on the cell size on the basis of the proposed model.

Index Terms—Antenna input impedance, FDTD method, feed-
ing gap, thin-wire antenna.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method has o
been applied to various electromagnetic analyses. FI'r%]' 1. One-cell gap model of & thin-wire dipole antenna.
pp g Yy

particular, analysis of the interactions between a cellular phone . o )
and a human head is one of the most effective applicatio#§!ds the cell-size-dependent error when it is applied to a
of FDTD method as it includes the computation of interndlarrow feeding gap.
electromagnetic fields within the human head [1]-[3], i.e.,
a lossy dielectric body, which is difficult to treat using the Il. ONE-CELL GAP MODEL
method of moments (MoM). Fig. 1 illustrates a one-cell gap model, or delta gap model,

A wire antenna is a common radiating structure for portablghich has been used in various applications [1]-[4]. The feed-
communication devices. The feeding gap of a wire antennajiigy source is given by th&-field in the air gap corresponding
often modeled for FDTD calculation by the so-called “deltgp one-space interval of Yee’s lattice
gap model” [4] or “one-cell gap model” [5], which lets the
feeding gap to be one spatial interval of Yee’s lattice [6]. E(gap = -V/A (1)
However, the actual feeding gap is usually smaller than thghereV is the input voltage as a function of time andis
cell size. The conventional one-cell gap model can therefaige interval of Yee's lattice. Substituting (1) in the ordinary
cause cell-size-dependent error in FDTD computation. FDTD formula [7], theH-fields around the gap are given by

In this letter the characteristics of error due to the one- nt1/20;
cell gap model are investigated through a comparison betweeﬁw (6,5 +1/2,k+1/2)
the calculated antenna input impedance of a thin-wire half- = HI Y206, 5+ 1/2,k +1/2)

wavelength dipole obtained by the one-cell gap FDTD model Ay nrs e s
and that obtained by MoM where an infinitesimally narrow JTTYA [{Ey (67 +1/2,k+1) - By(i,j + 1/2’k)}
gap is assumed. We then develop an improved feeding gap —{EMi,j+ 1,k +1/2) + V" /A}] )

model for FDTD calculation which assumes an infinitesimal _ ‘ ) )
feeding gap instead of a one-cell gap. Furthermore, we sh¥ere the gap is located & j,k + 1/2). Since theE-field

that the proposed model clarifies how the one-cell gap mod@|the gap andH-fields surrounding the gap are dependent
on the lattice intervalA as described in (1) and (2), the one-
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Fig. 2. Input impedance of the thin-wire dipole with the one-cell gap. Theig. 3. Input impedance of the thin-wire dipole with the one-cell gap. The
antenna radius is ¢/500. antenna radius is ¢/150.

calculated using the one-cell gap FDTD model were com-

pared with those obtained by MoM [8], which assumes an

infinitesimal gap. The results are shown in Figs. 2 and 3.
The FDTD calculation parameters are as follows: A ®
+ antenna length/wave length/ A = 0.25 ~ 2.0;
e antenna radius:

A 4

Feeding gap
Ty

a = £/500 in Fig. 2
a = {¢/150 in Fig. 3; 4

o cell size:A =1¢/11,£/21,¢/41,4/81,

« calculation region2¢ x 2¢ x 2¢;

¢ boundary conditions: 2nd approximations of Mur's ab-
sorbing boundary condition [9];

 the subcell method [10] is applied to model a smaller
radius for the thin-wire antenna than the cell size.

In MoM calculation, the Galerkin’'s Method with piecewise
sinusoidal functions was employed and the antenna wire Wag§ 4. Infinitesimal gap model of a thin-wire dipole antenna.
divided into 255 and 31 segments fer= ¢/500 and ¢/150,

respectively. whereé is the impulse function of and the origin is at the

For a = £/500 (Fig. 2), the calculation using smaller ceIIsCenter in the gap.

seemed to converge to the sol_ution obtained by MOM'.ForSince the H-fields around the gap are predominantly in-
a = £/150 (Fig. 3), however, this was not true; calculation, - by the antenna current flowing near the gapHtfeelds
with the relatively larger cell sized = ¢/21, produced values are assumed to havg/r dependence, whereis the distance
closer to the MoM results than calculations with smaller cellﬁ. m the antenna axis. We can then, apply the subcell method
These results indicate that the one-cell gap is not a go ] to H-field calculations around the gap and obtain the
model for a narrow gap and error is dependent on the c eIW EDTD formula as follows:
size. They also indicated that the expectation that one-cell gap ’
FDTD calculation would converge to MoM calculation for anH™+/2(i, j +1/2,k 4+ 1/2)

infinitesimal gap as the cell size decreased is not always true. — HY Y2065 4+1/2,k +1/2)

Ay e e
lIl. | NFINITESIMAL GAP MODEL T N {{Ey (65 +1/2,k+1) — EJ(i.j +1/2,k)}

Instead of the one-cell gap, we considered a new gap 2 e s "
model for FDTD calculation in which the antenna gap is - 1n(A/a){EZ(L’J +LE+1/2)+V /A} )
infinitesimally small, as Fig. 4 shows. Here, tliefield in (4)

the infinitesimal gap can be represented as . ] ]
The antenna input impedance obtained by FDTD calcula-

E(gap = —-Vé(z) (3) tions using this infinitesimal gap model are shown in Figs. 5
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Fig. 5. Input impedance of the thin-wire dipole with the infinitesimal gap.
The antenna radius is ¢/500.
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TABLE |
EFFECTIVE RADIUS a.g FOR CALCULATIONS OF
Fic. 2 (« = £/500) and Re. 3 (a = (/150)

A /11 ¢/21 ¢/41 /31
a, 0/81.3 ¢/155. £/303. £/599.

Table | shows the effective radius for the calculations in
Figs. 2 and 3. When the effective radiug: approximates the
actual radiusa, FDTD calculation with one-cell gap formu-
lation approximates that with infinitesimal gap formulation.
Hence the results oh = £/81 for a = £/500 and A = ¢/21
for ¢« = £/150 agree well with the MoM calculation results
for infinitesimal gap.

V. CONCLUSION

We showed that the one-cell gap model for a thin-wire

antenna can cause error in calculated antenna input impedance,

1500 ‘ T
e IOMeENt (31)
—— FDTD (81)
——— FDTD (41)

1000 --- FDTD (21)
............... FDTD (11}

500

N
\Y

o

Antenna input impedance [ohm]

N
Nt oo
<.
-500
-1000
0.25 0.5 0.75 1 1.25 1.5 1.75 2

(1]

Antenna length / wavelength

Fig. 6. Input impedance of the thin-wire dipole with the infinitesimal gap. 2]
The antenna radius is ¢/150.

and this error is strongly dependent on the FDTD cell size.

We also presented an improved feeding gap model for a
narrow gap. The results of FDTD calculation using this model
agreed well with MoM calculation assuming an infinitesimal
gap, and they were barely affected by cell size.

The dependence of error on cell size was discussed based on
P formulations for a one-cell gap and infinitesimal gap models.
7. We showed that a one-cell gap model for a narrow gap agreed
with the infinitesimal gap model only if the cell size was
chosen so that the effective radius of the antenna approximated
the actual radius.
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